Exact solution of two classes of prudent polygons
نویسنده
چکیده
Prudent walks are self-avoiding walks on a lattice which never step into the direction of an already occupied vertex. We study the closed version of these walks, called prudent polygons, where the last vertex of the walk is adjacent to its first one. More precisely, we give the half-perimeter generating functions of two subclasses of prudent polygons on the square lattice, which turn out to be algebraic and non-D-finite, respectively.
منابع مشابه
Prudent walks and polygons
We have produced extended series for two-dimensional prudent polygons, based on a transfer matrix algorithm of complexity O(n), for a series of length n. We have extended the definition to three dimensions and produced series expansions for both prudent walks and polygons in three dimensions. For prudent polygons in two dimensions we find the growth constant to be smaller than that for the corr...
متن کاملThe unusual asymptotics of three-sided prudent polygons
We have studied the area-generating function of prudent polygons on the square lattice. Exact solutions are obtained for the generating function of two-sided and three-sided prudent polygons, and a functional equation is found for four-sided prudent polygons. This is used to generate series coefficients in polynomial time, and these are analysed to determine the asymptotics numerically. A caref...
متن کاملSome New Self-avoiding Walk and Polygon Models
We study the behaviour of prudent, perimeter and quasi-prudent self-avoiding walks and polygons in both two and three dimensions, as well as some solvable subsets. Our analysis combines exact solutions of some simpler cases, careful asymptotic analysis of functional equations which can be obtained in more complicated cases and extensive numerical studies based on exact series expansions for les...
متن کاملThe enumeration of prudent polygons by area and its unusual asymptotics
Prudent walks are special self-avoiding walks that never take a step towards an already occupied site, and k-sided prudent walks (with k = 1, 2, 3, 4) are, in essence, only allowed to grow along k directions. Prudent polygons are prudent walks that return to a point adjacent to their starting point. Prudent walks and polygons have been previously enumerated by length and perimeter (Bousquet-Mél...
متن کاملA Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations
In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 31 شماره
صفحات -
تاریخ انتشار 2010